Data Pipelines
Data Pipeline Mechanics
The streaming pipeline processes 2.4M msg/sec through:
Kafka brokers with Tiered Storage (S3 offload)
Ray actors (0.5 GPU each) for parallel decoding
Triton Inference Server with TensorRT-LLM backends Data routing uses learned embeddings - each message is projected into 128D space via Sentence-BERT, then hashed to target engine nodes using Multi-Probe LSH (ε=0.85 recall). The WebRTC data channels employ QUIC protocol with 0-RTT handshakes and BBR congestion control. For auditability, all messages are sealed with BLS-12-381 aggregate signatures before ingestion, creating an immutable proof trail.
import ray
from kafka import KafkaConsumer
@ray.remote(num_gpus=0.5)
class DataIngester:
def __init__(self):
self.consumer = KafkaConsumer(
'blockchain-stream',
bootstrap_servers=['kafka.auctor.ai:9092'],
value_deserializer=lambda v: msgpack.unpackb(v, raw=False)
)
self.model = AutoModelForSequenceClassification.from_pretrained(...)
def process_stream(self):
for msg in self.consumer:
tensor = self._convert_to_tensor(msg.value)
prediction = self.model(tensor)
self._route_to_engine(prediction)
def _route_to_engine(self, data):
"""Smart routing based on tensor content"""
if data['chain_id'] == 0xaa36a7: # Ethereum
channel = self.rtc_channels['eth']
else:
channel = self.rtc_channels['default']
channel.send(data)
graph TD
A[Blockchain Nodes] --> B{Kafka Cluster}
B --> C[Ray Distributed Workers]
C --> D[GPU Accelerated Preprocessing]
D --> E[Real-Time Model Inference]
E --> F[WebRTC Data Channels]
F --> G[Auctor Core Engine] code
Performance Metrics:
2M msg/sec throughput
<5ms 99th percentile latency
End-to-end encryption via TLS 1.3 + PQ KEM
Last updated