Distributed LLM Orchestration
NAL acts as the real-time data fabric converting raw blockchain data into neural tensors. Using TorchScript's JIT compilation, it achieves 15μs/tensor conversion latency through:
Memory-mapped I/O buffers for EVM calldata
CUDA-accelerated Solana account encoding (Base58 → FP32 SIMD ops)
Sparse attention masks with 92% sparsity ratio via probabilistic sampling The layer implements ε=0.03 differential privacy via PySyft's Opacus, adding Laplacian noise (λ=1.2) to cross-chain references. For state synchronization, it uses a CRDT-inspired conflict resolution protocol where tensor deltas are merged using element-wise L2-norm prioritization.
import asyncio
from aiortc import RTCDataChannel
from transformers import AutoModelForCausalLM
class LLMOrchestrator:
def __init__(self, model_repo="auctor/llm-ensemble-v4"):
self.models = {
"decision": AutoModelForCausalLM.from_pretrained(f"{model_repo}-decision"),
"risk": AutoModelForCausalLM.from_pretrained(f"{model_repo}-risk"),
"arbitrage": AutoModelForCausalLM.from_pretrained(f"{model_repo}-arbitrage")
}
self.rtc_channels = {} # WebRTC data channels for low-latency comms
async def handle_request(self, request: dict) -> dict:
"""Process requests through ensemble model pipeline"""
with torch.inference_mode():
decision_logits = self.models['decision'](request['input_ids'])
risk_assessment = self.models['risk'](decision_logits)
arbitrage_ops = self.models['arbitrage'](risk_assessment)
return self._package_response(arbitrage_ops)
def _package_response(self, tensor: torch.Tensor) -> dict:
"""Convert tensor output to optimized binary format"""
return {
'payload': tensor.numpy().tobytes(),
'compression': 'float16',
'metadata': {'version': '0xfea21c', 'quantized': True}
}
Key Implementation Details:
Hybrid WebRTC+gRPC communication layer
Quantized model weights (8-bit precision)
CUDA-optimized kernels for transformer layers
Merkle-rooted model versioning
Last updated